Minimizing geodesic nets and critical points of distance

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Occlusion points propagation geodesic distance transformation

We propose a new approach to compute geodesic distance transformations in arbitrary 2D and 3D domains. The distance transformation proposed here is robust and has proved to have a computational complexity linear in the domain size. Our scheme is based on a new technique which we call occlusion points propagation, and with a higher accuracy than other geodesic distance transformations proposed b...

متن کامل

Genericity of Nondegenerate Critical Points and Morse Geodesic Functionals

We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Based on an idea of B. White [24], we prove an abstract genericity result that employs the infinite dimensional Sard–Smale theorem. Applications are given by proving the genericity of metric...

متن کامل

Critical points of distance functions and applications to geometry

8. Introduction Critical points of distance functions Toponogov's theorem; first application:a Background on finiteness theorems Homotopy Finiteness Appendix. Some volume estimates Betti numbers and rank Appendix: The generalized Mayer-Vietoris estimate Rank, curvature and diameter Ricci curvature, volume and the Laplacian Appendix. The maximum principle Ricci curvature, diameter growth and fin...

متن کامل

Euclidean and Geodesic Distance Profiles

This paper presents a boundary-based, topological shape descriptor: the distance profile. It is inspired by the LBP (= local binary pattern) scale space – a topological shape descriptor computed by a filtration with concentric circles around a reference point. For rigid objects, the distance profile is computed by the Euclidean distance of each boundary pixel to a reference point. A geodesic di...

متن کامل

Approximating geodesic tree distance

Billera, Holmes, and Vogtmann introduced an intriguing new phylogenetic tree metric for weighted trees with useful properties related to statistical analysis. However, the best known algorithm for calculating this distance is exponential in the number of leaves of the trees compared. We point out that lower and upper bounds for this distance, which can be calculated in linear time, can differ b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2020

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2020.101624